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Effect of friction in a toy model of granular compaction
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A toy model of granular compaction which includes some resistance due to granular arches is proposed. In
this model, the solid/solid friction of contacting grains is a key parameter and a slipping threghatd
defined. Realistic compaction behaviors have been obtained. Two regimes separated by a criti&sil @bint
the slipping threshold have been emphasizeda slow compaction with lots of paralyzed regions aigan
inverse logarithmic dynamics with a power-law scaling of grain mobility. Below the critical pozntthe
physical properties of this frozen system become independant. #fbove the critical poin‘wZ—i.e., for low
friction values—the packing properties behave as described by the classical Janssen theory for silos.
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I. INTRODUCTION phase segregation occurring in granular binary mixt(iggs
Our main motivation is to propose a simple model which
In our industrial world, most of the products are pro- reproduces the behaviors of compaction dynamics and which
cessed, transported, and stocked in their granular state. Thecludes the effect of friction.
density of those granular systems appears therefore to be a
crucial parameter for evident economic reasons. In this spirit,
the physics of compaction is thus relevant for a broad range

of applications[1,2]. Our toy model is the following. The grains are repre-

Some experimental studies report the evolution of granusented by rectangular blocks, as in the original Tetris model.
lar packing submitted to successive taps. Experiments on Vifywo orientations are possible on the tilted lattice. The main
brated granular materials exhibit low compactif8] and  ryle of this model is a geometrical constraint: two adjacent
phase segregatiod]. In most cases, the density of the ma- pjocks cannot have the same orientation along the principal
terial slowly changes as a function of the tap nuntteand an - axjs of the blocks. In so doing, close packing is realized
inverse logarithmic dynamics has been observed. For a fe\yhen lines of blocks of one orientation alternate with lines of
experiments, a fast exponential saturation of the density igjocks of the other one—i.e., when the system reaches a
obtained[5]. Also, some granular materials may presentquincunx configuration. In this paper, we will refer to this
small density variationgabout 1% from loose packing to packing as the well-ordered packing or ground state. The
dense configurations while, for others, high variations mayyotential energy is the lowest. In this state, there is no hole in
be observedup to 20%[6]). Therefore, granular materials the structure and a flat top surface.
exhibit a large diversity of compaction behaviors: according  The initial packing is built using a rain method: the grains
to the tapgreduced acceleration and numbersand accord-  are dropped from a random position on the top and stopped
ing to the ability to packnature and shape of the graink  \yhen they reach the heap. A loose-packed heap is obtained.
is of interest to find out the physical parameters that are typical configuration is shown in Fig. @top).
relevant for the occurrence of those different compaction |y order to take into account the friction, the apparent
dynamics. block weightsw; are introduced for every block with a

In order to reproduce a slow compaction dynamics, theslipping threshold. The weight of a single bloek, is as-
so-called Tetris model has been introduced by Caglioti andumed to be equal to 1 in arbitrary units. Since this calcula-
co-workers[7]. This toy model considers rectangular blockstjon is completely deterministic and depends on the block
placed on a square lattice tilted by 45°. The blocks are subgrientations and positions, the contact forces are calculated at
mitted to gravity and cannot overlap. At each simulationeach step for every block from top to bottom. The additional
step, the entire packing is perturbated by a virtual tap inyle for including friction is based on a More-Coulomb cri-
which a numben of motions per grain are realized. During terjum [9]: when a grain has an apparent weightlarger
each dynamic step, a grain is moved upward with a probabilthan a given values, it cannot move. Figure (right) shows
ity pusl0<pyp<3) and downward with a probabilitpsomn  the blocks for which the apparent weights are greater than
=1-py In the same time, the grain can rotate with a prob-,,=12. This slipping threshold, has a physical relevance.
ability pmt(:%). After the dynamical step, the packing relaxesIndeed, the friction forc&; between two grains is given by a
until all grains reach an equilibrium position with respect tocertain fractionu of the normal force at the contact. The
gravitation. The main parameter of the Tetris model is thdarger isw;, the strongest is the friction force. If a grain has a
probability ratio p,,/(1-pyp). As a function of this param- weight larger thanw,, the friction is such that it avoids any
eter, the acceleration of the taps are tuned and some inveragvement of the grain due to the shock produced by the tap.
logarithmic behaviors emerge, for small values. Recently, th&hus, the parametap. allows us to tune the amplitude of
Tetris model has shown some relevance for the study ofapsor the inverse of the static frictiop,. Note that the

Il. COMPACTION MODEL
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FIG. 1. (Top) Initial configuration of a packing obtained by the
“rain” method(see testfor w.=12. The gray scale levels emphasize
the orientation of the grair{Bottom) Only grains whose weight is

larger thanw,=12 are represented. % 5 s
7
7
asymptotic valuev,— « reduces the model to the Tetris one.
On the other hand, a slipping threshold vatue=1 leads to i, TR 5 e
a frozen situation—namely, when friction forces are larger VAL Sk 2
than vibration onesgor that the grains are glued together O

In this work, borders have been considered in order to
evidence some redirection of the forces towards the walls.
The friction between a grain and the border is the same as
between two grains. ANBSO G AN A3

The rules of a tap simulation are nearly the same as for %
the original Tetris model. It can be described in two stéps:
excitation andii) relaxation. APE

(i) A numberN of grains are randomly selected. In our e ns
simulation, this numbeN is fixed to the total number of e
grains lying on the lattice. When the geometry allows it, the
grain goes up with a probabilitp,, or goes down with a
probability pgown=1—pyp After grain’s translation, if the se-
lected grain has at least three free neighboring sites, it can
rotate with a probability 1/2.

(i) The entire system is then relaxed. The grains go down
until no grain motion is allowed downward. The only one 4
driving force is the gravity.
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Il RESULTS FIG. 2. Simulation of toy model. Six obtained configurations of

Simulations have been performed for various square |atthe heap for different thresholds; after 1d MCS taps. From top to
tice sizes fromL=40 to L=120. On such lattices, no jam- Pottom:wc=2, 4,12, 16, and 64.

ming is observed. The average total number of particleg,iice. Figure 2 presents the compacted heap afteMbiite
placed on the lattice with the rain method is equal to twWo-Carlo stepgMCS) taps for a 40< 40 lattice. The slipping
thirds of the total free sites. The value pf,/(1-pyp) has  thresholdw, has been set to 2, 4, 12, 16, 32, 64 from top to
been fixed to 1. Changing this parameter will not modify bottom. The situationw,=2 is the most constricting one.
qualitatively the results discussed below. Indeed, when a block has an upper neighbor, its apparent
weight is equal to 2: this block is immediately paralyzed. For
a greater value of the slipping threshadd, more grains are
free to move. The larger value @f; investigated herein is

The densityp is evaluated by dividing the total number of ».=6400; it should correspond to a model without friction
the sites by the number of particles in the lowest 25% of thelike the Tetris ong

A. Evolution of the density p
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FIG. 3. Evolution of the density with respect to the tap num- FIG. 4. Semilogarithmic plot of the asymptotic density as a

bert in a semilogarithmic plot. The different labels correspond tofunction of the slipping threshold, for different lattice sizesL
different slipping thresholdv. values which are indicated in the =20, 40, 60, 80, 100, and 120. The solid curves are fitted hyperbolic
legend. From bottom to topy.=32, 38, 44, 50, 56, 64, and 6400. tangent for determining the critical valué; of the slipping thresh-
Simulations have been performed on 20000 lattices. The solid  old w..

curves are fits using the inverse logarithmic law, Eqg.

Ap

1+BIn(1+t/7)’ @

p(t) = po =
Two kinds of structures can be seen across the packing:

force chains and cavities. The chains of force are defined b%herep is the asymptotic density whenos, Ap is the

the blocks which have a high effective weight. They form p,,imm variation of the densiti is a free fitting param-
lines that propagate through the whole packing. These chainNger andt is the number of taps. The parameteis a char-
are responsible for the redistribution of the weights in theycteristic number of taps. The inverse logarithmic behavior,
packing. Moreover, they can lean on the borders; thus a pagtq. (1), is relevant for a slow dynamics of compaction. The
of the total weight is supported by the borders. Subsequentlomplete evolution op can be fitted by this unique law, Eq.
some blocks are allowed to support less weight even whe), for all o, values.
they are located near the bottom of the packing. Below the The form of Eq.(1) allows us to determine the saturation
chains of force, caverns may then be found. They are holedensityp,, by fitting. The values op., are reported in Fig. 4,
in the packing which decrease the global density of the packwith respect to the slipping threshold.. The different
ing because arches resist to the taps. curves are obtained for different lattice sidesfrom L=20
Caverns are particularly visible in Fig. 2. As increases, up to L=120 lattices. The asymptotic behavior depends on
the size of the caverns decreases. Indeed, for laggmlues, the slipping thresholdvo: the higher the threshold is, the
the caverns are reduced to point defects in the “Crysta"inehigher the saturation is. Whatever the size of the lattice, the
quincunx structure. Those defects are very stable, especialffaximum densityp,. is obtained for high values of the slip-
when they are located in the bulk of the heap. Among thos®ing threshold and is equal to approximatively 0.96. A higher
stable defects, a hole can be surrounded by four blockdensity around 1 would have been expected but the presence

which are oriented towards it. Such singularities come fronff the remaining defects are responsible for this difference.
the geometrical laws. An inflection point is found whatever the considered size of

The packing is of course closely linked to the number Ofthe heap. Below this critical point, a poor compaction of the

these caverns inside the packing. It is noticeable that thgystem 1s observed. Above,, compaction of the system

number of caverns increases with the considered depth of gKes place. The critical poinb, indicates a change in the

packing. In other words, the well-ordered phasews from compaction dynamics since around that point the asymptotic

. . . density may change of 25%. This critical point is shifted
the top of the packing since the grains are less stressed the{SWards higher slipping threshold values while the gizef
This phenomenon is particularly well seen in Fig. 2 for the

. ~ : _ the system is increased.
particular c_aseuc—lz. The notion of cavernis also related to  11a inflection point corresponding to the critical slipping
the formation of arches.

: i thresholdw,, has been estimated by fitting a hyperbolic func-
The comparison of the heaps after a compaction procesgyn in a semilogarithmic scale. Figure 5 presents the critical
shows that the highew. is, the more packed the system point . as a function of the lattice siZe. The critical slip-

becomes. In so doing, the compactipnhas been plotted ping thresholdw;, is found to evolve linearily with the lattice
with respect to the number of taps in Fig. 3. The graph issize L. According to

represented in a semilogarithmic scale. Several values of the

slipping thresholdy, have been tested and are represented by w; ~0.43, (2)
different symbolgsee the legend The typical evolution of

the density is slow during the ten first taps before it drasti-as illustrated in Fig. 5. This linear relationship betwee*p
cally increases. A saturation occurs towards a maximunand L suggests the existence of a characteristic leggitn
value p,.. The solid curves correspond to fits by a three-the system. This length is thought to be related to the size
parameters lavi3,7] of the domains of mobile grains. Wheér<L, in the packing,
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FIG. 5. The critical slipping threshold;é versus the sizé of FIG. 7. Evolution of the ratioR of total pile weightw as a
the lattice. Error bars are indicated. The solid line corresponds t@,nction of the ratio of the slipping thresholg, and the critical
the simple linear fit, Eq(2). slipping thresholdwy, for different sizes of the lattice: 20, 40, 60,

80, 100, and 120. The solid curve is a fit with E@) from
only a few grains can move freely since most of the grainss./wc*=1 to 3.
are frozen by stable arches. Indeed, when this length grows

and reaches the system size-§, arches touch the borders  |n the Janssen theory of sil48], weights are partially

of the lattice. Then, the numerous grains being part of theedirected along the horizontal direction. The total presBure
arches are frozen in that constrained situation. This occurs @f the packing at the bottom of a silo is given by

the critical pointw,. Whené>L, the entire system is fluid.
There is thus a phase transition at the critical p@i@t P=pg)({l _ ex;(— D)} &)

which depends on the system size. With the linear slip of Fig. x/ 1

5, the data can be rescaled in order to obtain a unique critical

point. This can be seen in Fig. 6. The phenomenon is thu

independent of the system sike

here the lengthy includes the effect of friction along the
orders. According to this law, we find

Xow,
= *c L (4)
B. Janssen effect We

In this paragraph, the ratio of the total weight supportedWh_ere Xo is nearly the grain size. The fracticR of lost
by the borders is calculated. The process that allows th¥/€/ght along the borders is given by
weight to be redirected towards the borders is similar to the Yo®e haw*
one used in th&) model [10]: the grains redistribute their R= 1_h_* 1—eXF<— ) : ©)
weight to their neighbors below them according to some geo- @e Xo®e
metrical rules. In so doing, some stress lines exist and arghich is valid only when the system is not frustated by small
directed towards the border. Since a friction is consideredrches—i.e.w.> w,. The fractionR tends to zero when the
with the border, a fractiofR of the apparent weight is sup- friction is zero(w,— o): namely, this corresponds to a flu-
ported by these latter. The fractiéhof the apparent weight idlike system. From the data of Fig. 7, we can conclude that
supported by the border as a function of the slipping threshour toy model is in agreement with the Janssen theory for
old w, is presented in Fig. 7. If the slipping threshald is wc>w’;_ Below the critical pointw; the physical properties

high enough, there is nearly no friction and the grain cannopf this frozen system become indepentegf
transmit their apparent weights to the borders.

1 . ; . . C. Grain mobility

o ath oM According to the previous result that the introduction of
the slipping threshold, in a simple compaction model has
deep effects when regarding asymptotic densities and pres-
sures in silos. How can we measure the influence of friction
on the dynamics of compaction?

The inverse logarithmic dynamics finds its origin in the
geometrical constraints of the model. It has been proposed,
as for glassy systems, that the mobiljgyof the grains de-

100 1000 creases during compaction, allowing some trapping of de-
fects in the packing. Power-law scaling has been proposed

FIG. 6. Semilogarithmic plot of the asymptotic densityas a  for the grain mobility u as a function of(p..—p). Earlier
function of the ratio of slipping threshola, and the critical slip- ~ studies[11,12 have underlined the link between this mobil-
ping thresholdw, for different lattice sizest =20, 40, 60, 80, 100, ity law and the inverse logarithmic law but the effect of
and 120. friction has not been studied. We have numerically measured
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FIG. 9. Evolution of the exponem as a function of ratio of the

slipping thresholdw, and the critical slipping threshold,. The

lines conecting data are only a guide for the eye. The latticelsize

. . . . . ) ) is equal to 100.
w in simulations. This quantity. is measured during each

tap. It is the ratio of the moved grains and the total number
of grains in the lowest 25% of the lattice. Figure 8 presents aystem becomes fluid and a clear compaction is possible like
plot of u as a function op for various values of the slipping  jn the Tetris model. The transition between both regimes de-
thresholdw,. The power-law scaling pends on characteristic lengths: some friction lengtand
= — )8 the system sizé.

#= po+ Clps—p) © Abyi)ve the critical pointw.*, the model agrees with the
is found for all data. One should remark that we have conjanssen theory of silos. The raf®of lost weight on the
sidered a residual mobility, for the free grains in the cav- porders vanishes when, — .
erns, the c_oefﬁcie_nd: being an arbitrary free fitting param- In order to study the dynamics of compaction, we also
eter. The interesting result is that the expongndf the  aaqured the mobility of the grains. As proposed in earlier
scaling depends clearly on the friction. Belay, the system studies[11,12, the mobility decreases drastically when

's frozen and the exponent is close fo=4. Involving a reaches the saturation densjly. A power-law scaling has

rapid decrease of the mobility, abowé; one has, however, a - L
low value 8~ 2 involving a slow decrease of the mobility begn .found and the .n.10b|I|ty. exponept exhibits a large
2 variation above the critical poinb,.

(Fig. 9). This is remarkable that even when the density does Our work emphasized the revelance of friction on the dy-

not seem to evolve, the grain mobility is still nonzero. namics of compaction. Experimental studies are needed in
order to test those behaviors.

FIG. 8. Grain mobilityu as a function op for different value of
the slipping threshold,.. The lattice size is equal to 100.

IV. CONCLUSION
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