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A toy model of granular compaction which includes some resistance due to granular arches is proposed. In
this model, the solid/solid friction of contacting grains is a key parameter and a slipping thresholdvc is
defined. Realistic compaction behaviors have been obtained. Two regimes separated by a critical pointvc

* of
the slipping threshold have been emphasized:(i) a slow compaction with lots of paralyzed regions and(ii ) an
inverse logarithmic dynamics with a power-law scaling of grain mobility. Below the critical pointvc

* , the
physical properties of this frozen system become independent ofvc. Above the critical pointvc

*—i.e., for low
friction values—the packing properties behave as described by the classical Janssen theory for silos.
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I. INTRODUCTION

In our industrial world, most of the products are pro-
cessed, transported, and stocked in their granular state. The
density of those granular systems appears therefore to be a
crucial parameter for evident economic reasons. In this spirit,
the physics of compaction is thus relevant for a broad range
of applications[1,2].

Some experimental studies report the evolution of granu-
lar packing submitted to successive taps. Experiments on vi-
brated granular materials exhibit low compaction[3] and
phase segregation[4]. In most cases, the density of the ma-
terial slowly changes as a function of the tap numbert and an
inverse logarithmic dynamics has been observed. For a few
experiments, a fast exponential saturation of the density is
obtained [5]. Also, some granular materials may present
small density variations(about 1%) from loose packing to
dense configurations while, for others, high variations may
be observed(up to 20%[6]). Therefore, granular materials
exhibit a large diversity of compaction behaviors: according
to the taps(reduced accelerationG and numbers) and accord-
ing to the ability to pack(nature and shape of the grains). It
is of interest to find out the physical parameters that are
relevant for the occurrence of those different compaction
dynamics.

In order to reproduce a slow compaction dynamics, the
so-called Tetris model has been introduced by Caglioti and
co-workers[7]. This toy model considers rectangular blocks
placed on a square lattice tilted by 45°. The blocks are sub-
mitted to gravity and cannot overlap. At each simulation
step, the entire packing is perturbated by a virtual tap in
which a numbern of motions per grain are realized. During
each dynamic step, a grain is moved upward with a probabil-
ity pups0,pup,

1
2

d and downward with a probabilitypdown
=1−pup. In the same time, the grain can rotate with a prob-
ability prots=1

2
d. After the dynamical step, the packing relaxes

until all grains reach an equilibrium position with respect to
gravitation. The main parameter of the Tetris model is the
probability ratio pup/ s1−pupd. As a function of this param-
eter, the acceleration of the taps are tuned and some inverse
logarithmic behaviors emerge, for small values. Recently, the
Tetris model has shown some relevance for the study of

phase segregation occurring in granular binary mixtures[8].
Our main motivation is to propose a simple model which

reproduces the behaviors of compaction dynamics and which
includes the effect of friction.

II. COMPACTION MODEL

Our toy model is the following. The grains are repre-
sented by rectangular blocks, as in the original Tetris model.
Two orientations are possible on the tilted lattice. The main
rule of this model is a geometrical constraint: two adjacent
blocks cannot have the same orientation along the principal
axis of the blocks. In so doing, close packing is realized
when lines of blocks of one orientation alternate with lines of
blocks of the other one—i.e., when the system reaches a
quincunx configuration. In this paper, we will refer to this
packing as the well-ordered packing or ground state. The
potential energy is the lowest. In this state, there is no hole in
the structure and a flat top surface.

The initial packing is built using a rain method: the grains
are dropped from a random position on the top and stopped
when they reach the heap. A loose-packed heap is obtained.
A typical configuration is shown in Fig. 1(top).

In order to take into account the friction, the apparent
block weightsvi are introduced for every blocki with a
slipping threshold. The weight of a single blockvb is as-
sumed to be equal to 1 in arbitrary units. Since this calcula-
tion is completely deterministic and depends on the block
orientations and positions, the contact forces are calculated at
each step for every block from top to bottom. The additional
rule for including friction is based on a More-Coulomb cri-
terium [9]: when a grain has an apparent weightvi larger
than a given valuevc, it cannot move. Figure 1(right) shows
the blocks for which the apparent weights are greater than
vc=12. This slipping thresholdvc has a physical relevance.
Indeed, the friction forceFi between two grains is given by a
certain fractionms of the normal force at the contact. The
larger isvi, the strongest is the friction force. If a grain has a
weight larger thanvc, the friction is such that it avoids any
movement of the grain due to the shock produced by the tap.
Thus, the parametervc allows us to tune the amplitude of
taps or the inverse of the static frictionms. Note that the
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asymptotic valuevc→` reduces the model to the Tetris one.
On the other hand, a slipping threshold valuevc=1 leads to
a frozen situation—namely, when friction forces are larger
than vibration ones(or that the grains are glued together).

In this work, borders have been considered in order to
evidence some redirection of the forces towards the walls.
The friction between a grain and the border is the same as
between two grains.

The rules of a tap simulation are nearly the same as for
the original Tetris model. It can be described in two steps:(i)
excitation and(ii ) relaxation.

(i) A numberN of grains are randomly selected. In our
simulation, this numberN is fixed to the total number of
grains lying on the lattice. When the geometry allows it, the
grain goes up with a probabilitypup or goes down with a
probability pdown=1−pup. After grain’s translation, if the se-
lected grain has at least three free neighboring sites, it can
rotate with a probability 1/2.

(ii ) The entire system is then relaxed. The grains go down
until no grain motion is allowed downward. The only one
driving force is the gravity.

III. RESULTS

Simulations have been performed for various square lat-
tice sizes fromL=40 to L=120. On such lattices, no jam-
ming is observed. The average total number of particles
placed on the lattice with the rain method is equal to two-
thirds of the total free sites. The value ofpup/ s1−pupd has
been fixed to 1. Changing this parameter will not modify
qualitatively the results discussed below.

A. Evolution of the density r

The densityr is evaluated by dividing the total number of
the sites by the number of particles in the lowest 25% of the

lattice. Figure 2 presents the compacted heap after 104 Monte
Carlo steps(MCS) taps for a 40340 lattice. The slipping
thresholdvc has been set to 2, 4, 12, 16, 32, 64 from top to
bottom. The situationvc=2 is the most constricting one.
Indeed, when a block has an upper neighbor, its apparent
weight is equal to 2: this block is immediately paralyzed. For
a greater value of the slipping thresholdvc, more grains are
free to move. The larger value ofvc investigated herein is
vc=6400; it should correspond to a model without friction
(like the Tetris one).

FIG. 1. (Top) Initial configuration of a packing obtained by the
“rain” method(see test) for vc=12. The gray scale levels emphasize
the orientation of the grain.(Bottom) Only grains whose weight is
larger thanvc=12 are represented.

FIG. 2. Simulation of toy model. Six obtained configurations of
the heap for different thresholdsvc after 104 MCS taps. From top to
bottom:vc=2, 4, 12, 16, and 64.
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Two kinds of structures can be seen across the packing:
force chains and cavities. The chains of force are defined by
the blocks which have a high effective weight. They form
lines that propagate through the whole packing. These chains
are responsible for the redistribution of the weights in the
packing. Moreover, they can lean on the borders; thus a part
of the total weight is supported by the borders. Subsequently,
some blocks are allowed to support less weight even when
they are located near the bottom of the packing. Below the
chains of force, caverns may then be found. They are holes
in the packing which decrease the global density of the pack-
ing because arches resist to the taps.

Caverns are particularly visible in Fig. 2. Asvc increases,
the size of the caverns decreases. Indeed, for largevc values,
the caverns are reduced to point defects in the “crystalline”
quincunx structure. Those defects are very stable, especially
when they are located in the bulk of the heap. Among those
stable defects, a hole can be surrounded by four blocks
which are oriented towards it. Such singularities come from
the geometrical laws.

The packing is of course closely linked to the number of
these caverns inside the packing. It is noticeable that the
number of caverns increases with the considered depth of a
packing. In other words, the well-ordered phasegrows from
the top of the packing since the grains are less stressed there.
This phenomenon is particularly well seen in Fig. 2 for the
particular casevc=12. The notion of cavern is also related to
the formation of arches.

The comparison of the heaps after a compaction process
shows that the highervc is, the more packed the system
becomes. In so doing, the compactionr has been plotted
with respect to the number of taps in Fig. 3. The graph is
represented in a semilogarithmic scale. Several values of the
slipping thresholdvc have been tested and are represented by
different symbols(see the legend). The typical evolution of
the density is slow during the ten first taps before it drasti-
cally increases. A saturation occurs towards a maximum
value r`. The solid curves correspond to fits by a three-
parameters law[3,7]

rstd = r` −
Dr

1 + B lns1 + t/td
, s1d

where r` is the asymptotic density whent→`, Dr is the
maximum variation of the density,B is a free fitting param-
eter andt is the number of taps. The parametert is a char-
acteristic number of taps. The inverse logarithmic behavior,
Eq. (1), is relevant for a slow dynamics of compaction. The
complete evolution ofr can be fitted by this unique law, Eq.
(1), for all vc values.

The form of Eq.(1) allows us to determine the saturation
densityr` by fitting. The values ofr` are reported in Fig. 4,
with respect to the slipping thresholdvc. The different
curves are obtained for different lattice sizesL: from L=20
up to L=120 lattices. The asymptotic behavior depends on
the slipping thresholdvc: the higher the threshold is, the
higher the saturation is. Whatever the size of the lattice, the
maximum densityr` is obtained for high values of the slip-
ping threshold and is equal to approximatively 0.96. A higher
density around 1 would have been expected but the presence
of the remaining defects are responsible for this difference.
An inflection point is found whatever the considered size of
the heap. Below this critical point, a poor compaction of the
system is observed. Abovevc

* , compaction of the system
takes place. The critical pointvc

* indicates a change in the
compaction dynamics since around that point the asymptotic
density may change of 25%. This critical point is shifted
towards higher slipping threshold values while the sizeL of
the system is increased.

The inflection point corresponding to the critical slipping
thresholdvc

* has been estimated by fitting a hyperbolic func-
tion in a semilogarithmic scale. Figure 5 presents the critical
point vc

* as a function of the lattice sizeL. The critical slip-
ping thresholdvc

* is found to evolve linearily with the lattice
sizeL. According to

vc
* < 0.43L, s2d

as illustrated in Fig. 5. This linear relationship betweenvc
*

and L suggests the existence of a characteristic lengthj in
the system. This lengthj is thought to be related to the size
of the domains of mobile grains. Whenj,L, in the packing,

FIG. 3. Evolution of the densityr with respect to the tap num-
ber t in a semilogarithmic plot. The different labels correspond to
different slipping thresholdvc values which are indicated in the
legend. From bottom to top,vc=32, 38, 44, 50, 56, 64, and 6400.
Simulations have been performed on 1003100 lattices. The solid
curves are fits using the inverse logarithmic law, Eq.(1).

FIG. 4. Semilogarithmic plot of the asymptotic densityr` as a
function of the slipping thresholdvc for different lattice sizes:L
=20, 40, 60, 80, 100, and 120. The solid curves are fitted hyperbolic
tangent for determining the critical valuevc

* of the slipping thresh-
old vc.
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only a few grains can move freely since most of the grains
are frozen by stable arches. Indeed, when this length grows
and reaches the system sizeL<j, arches touch the borders
of the lattice. Then, the numerous grains being part of the
arches are frozen in that constrained situation. This occurs at
the critical pointvc

* . Whenj.L, the entire system is fluid.
There is thus a phase transition at the critical pointvc

*

which depends on the system size. With the linear slip of Fig.
5, the data can be rescaled in order to obtain a unique critical
point. This can be seen in Fig. 6. The phenomenon is thus
independent of the system sizeL.

B. Janssen effect

In this paragraph, the ratio of the total weight supported
by the borders is calculated. The process that allows the
weight to be redirected towards the borders is similar to the
one used in theQ model [10]: the grains redistribute their
weight to their neighbors below them according to some geo-
metrical rules. In so doing, some stress lines exist and are
directed towards the border. Since a friction is considered
with the border, a fractionR of the apparent weight is sup-
ported by these latter. The fractionR of the apparent weight
supported by the border as a function of the slipping thresh-
old vc is presented in Fig. 7. If the slipping thresholdvc is
high enough, there is nearly no friction and the grain cannot
transmit their apparent weights to the borders.

In the Janssen theory of silos[9], weights are partially
redirected along the horizontal direction. The total pressureP
of the packing at the bottom of a silo is given by

P = rgxF1 − expS−
h

x
DG , s3d

where the lengthx includes the effect of friction along the
borders. According to this law, we find

x =
x0vc

vc*
, s4d

where x0 is nearly the grain size. The fractionR of lost
weight along the borders is given by

R= 1 −
x0vc

hvc*
F1 − expS−

hvc*

x0vc
DG , s5d

which is valid only when the system is not frustated by small
arches—i.e.,vc.vc

* . The fractionR tends to zero when the
friction is zerosvc→`d: namely, this corresponds to a flu-
idlike system. From the data of Fig. 7, we can conclude that
our toy model is in agreement with the Janssen theory for
vc.vc

* . Below the critical pointvc
* , the physical properties

of this frozen system become indepent ofvc.

C. Grain mobility

According to the previous result that the introduction of
the slipping thresholdvc in a simple compaction model has
deep effects when regarding asymptotic densities and pres-
sures in silos. How can we measure the influence of friction
on the dynamics of compaction?

The inverse logarithmic dynamics finds its origin in the
geometrical constraints of the model. It has been proposed,
as for glassy systems, that the mobilitym of the grains de-
creases during compaction, allowing some trapping of de-
fects in the packing. Power-law scaling has been proposed
for the grain mobilitym as a function ofsr`−rd. Earlier
studies[11,12] have underlined the link between this mobil-
ity law and the inverse logarithmic law but the effect of
friction has not been studied. We have numerically measured

FIG. 5. The critical slipping thresholdvc
* versus the sizeL of

the lattice. Error bars are indicated. The solid line corresponds to
the simple linear fit, Eq.(2).

FIG. 6. Semilogarithmic plot of the asymptotic densityr` as a
function of the ratio of slipping thresholdvc and the critical slip-
ping thresholdvc

* for different lattice sizes:L=20, 40, 60, 80, 100,
and 120.

FIG. 7. Evolution of the ratioR of total pile weightv as a
function of the ratio of the slipping thresholdvc and the critical
slipping thresholdvc

* for different sizes of the latticeL: 20, 40, 60,
80, 100, and 120. The solid curve is a fit with Eq.(5) from
vc/vc* =1 to 3.
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m in simulations. This quantitym is measured during each
tap. It is the ratio of the moved grains and the total number
of grains in the lowest 25% of the lattice. Figure 8 presents a
plot of m as a function ofr for various values of the slipping
thresholdvc. The power-law scaling

m = m0 + csr` − rdb s6d

is found for all data. One should remark that we have con-
sidered a residual mobilitym0 for the free grains in the cav-
erns, the coefficientc being an arbitrary free fitting param-
eter. The interesting result is that the exponentb of the
scaling depends clearly on the friction. Belowvc

* , the system
is frozen and the exponent is close tob<4. Involving a
rapid decrease of the mobility, abovevc

* ; one has, however, a
low value b< 3

2 involving a slow decrease of the mobility
(Fig. 9). This is remarkable that even when the density does
not seem to evolve, the grain mobility is still nonzero.

IV. CONCLUSION

Arches have been produced by introducing a slipping
thresholdvc related to the static friction coefficientms be-
tween contacting grains. The density has been studied with
respect to the number of taps. Two main regimes have been
found. For low values of the slipping threshold, the system is
completely frozen and the maximum density obtained after
tapping is low. For a large value of the thresholdvc, the

system becomes fluid and a clear compaction is possible like
in the Tetris model. The transition between both regimes de-
pends on characteristic lengths: some friction lengthj and
the system sizeL.

Above the critical pointvc*, the model agrees with the
Janssen theory of silos. The ratioR of lost weight on the
borders vanishes whenvc→`.

In order to study the dynamics of compaction, we also
measured the mobility of the grains. As proposed in earlier
studies[11,12], the mobility decreases drastically whenr
reaches the saturation densityr`. A power-law scaling has
been found and the mobility exponentb exhibits a large
variation above the critical pointvc

* .
Our work emphasized the revelance of friction on the dy-

namics of compaction. Experimental studies are needed in
order to test those behaviors.
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FIG. 8. Grain mobilitym as a function ofr for different value of
the slipping thresholdvc. The lattice sizeL is equal to 100.

FIG. 9. Evolution of the exponentb as a function of ratio of the
slipping thresholdvc and the critical slipping thresholdvc

* . The
lines conecting data are only a guide for the eye. The lattice sizeL
is equal to 100.
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